
International Journal of Theoretical Physics, Vol. 21, No. 12, 1982 

Causal Nets 
o r  

What Is a Deterministic Computation? 

P r t e r  G a c s  I 

Computer Science Department, University of Rochester, Rochester, New York 14627 

and L e o n i d  A.  Lev in  2 

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139 

Received May 8, 1981 

The network approach to computation is more direct and "physical" than the 
one based on some specific computing devices (like Turing machines). However, 
the size of a usual--e.g., Boolean--network does not reflect the complexity of 
computing the corresponding function, since a small network may be very hard 
to find even if it exists. A history of the work of a particular computing device 
can be described as a network satisfying some restrictions. The size of this 
network reflects the complexity of the problem, but the restrictions are usually 
somewhat arbitrary and even awkward. Causal nets are restricted only by 
determinism (causality) and locality of interaction. Their geometrical characteris- 
tics do reflect computational complexities. And various imaginary computer 
devices are easy to express in their terms. The elementarity of this concept may 
help bringing geometrical and algebraic (and maybe even physical) methods into 
the theory of computations. This hope is supported by the group-theoretical 
criterion given in this paper for computability from symmetrical initial configura- 
tions. 

1. I N T R O D U C T I O N  

In  this work ,  we  p r o p o s e  a f r a m e w o r k  u n i f y i n g  va r i ous  aspec t s  o f  the  

t h e o r y  of  c o m p l e x i t i e s  o f  i n f o r m a t i o n  p r o c e s s i n g - - a l s o  p r o v i d i n g  a lan-  

guage  for  s o m e  n e w  p r o b l e m s .  Presen t ly ,  m a n y  resul t s  b e l o w  the  leve l  of  

Part of this work was done while this author was visiting Johann Wolfgang Goethe University, 
Frankfurt am Main in 1978 and Stanford University in 1979. 

2The research of this author was partially supported by NSF grants MCS 77-19754 and 
MCS-810421 I. 

961 

0020-7748/82/1200-0961 $03.00/0 �9 1982 Plenum Publishing Corporation 



962 Ghcs and Levin 

abstraction provided by Blum's axiomatic theory are seemingly dependent 
on specific machine models (Turing machine, RAM, iterative network, etc.) 
or formulated in such models with some comment on the measure of 
independence of the model. This leads to unnecessary specification and to 
awkward formal constructions unusual in traditional mathematics. 

We take the notion of computation itself as a primitive (causal net 3) 
instead of considering the work of a device performing this computation. 
Such an approach is less detailed since the same computation can be 
implemented in various ways: on different devices, sequentially or paral- 
lelly, varying the order of the operations and their distribution over parts of 
the device. Because of its potential for the avoidance of details, we hope to 
set up a more unified framework providing simpler definitions and still 
preserving concreteness and elementarity. A causal net can be interpreted as 
the time-space history of all elementary operations accomplished in the 
computing process, with their mutual dependencies indicated. As an addi- 
tional advantage of this approach, a computation on each input is regarded 
as a separate finite object independently of the context of a function over an 
infinite domain. In this way, we hope to facilitate the application of 
geometric and algebraic methods in complexity theory, and to preserve the 
advantages of the theory of Boolean circuits. 

Unlike other types of nets (e.g., Boolean circuits) the causal net 
constructs its logical structure in the process of computation and thus it can 
be reconstructed from its input and the structure of the possible neighbor- 
hoods in it (causal structure). All operations needed for this are taken into 
account. At a fixed causal structure (playing the role of the program of the 
algorithm) the input nets can be arbitrarily large. At a given size of the 
input, the size of the causal nets is a complexity of computation in the usual 
sense (most similar to the product of time and space) in contrast to the size 
of the Boolean circuits which is bounded (by 2"/n). The closeness of the 
definition of causal nets to some physical ideas gives hope of finding a 
connection between the geometrical characteristics of these nets and the 
physical characteristics of computations, as, e.g., the size of the net and the 
entropy increase caused by the computation in question. 

The last years witnessed a large number of ad hoc models for parallel 
computation addressing special problems like synchrony. Some of them, as 
also the classical Boolean circuits, are very different in nature from Turing- 
machine-style sequential models. For sequential machines, Kolmogorov and 
Uspenskii (1958) made the first significant steps toward a model general 

aN. V. Petri (1972) is different from the inventor of Petri nets--which have no essential 
relation to our causal nets. 



Causal Nets 963 

enough so that most other models could be considered as its restricted 
forms. Their machine has a graphlike storage structure undergoing gradual 
local changes in time, by the work of a constant number of active units. 

In the next sections, we introduce the concept of causal nets and 
compare it with a more traditional model of computations: Kolmogorov 
machines in parallel mode. We also consider the problem of computability 
when input nets with arbitrary symmetries are allowed. This problem seems 
to be new because it does not arise but for sufficiently general concepts of 
parallel computations like the ones presented here. We give a complete 
characterization of the functions computable in these models- - in  terms of 
the automorphism group of the input. The result can be considered as some 
"Church Thesis" for symmetry-preserving computations and is related to 
some combinatorial theorems of Babai and Lov~sz (1973). L. A. Levin 
originated the concept of causal nets, P. G~cs proved the result on the 
symmetric inputs. 

2. BASIC DEFINITIONS 

2.1. Causal Nets. A net X is a directed labeled graph, i.e., a matrix 
0: [XI2~O defining the label 8(x, y )  of the edge (or the symbol oo of its 
absence) between any two nodes. The set of ancestors of any node x (i.e., of 
nodes connected to x by a directed path) is assumed to be finite. A subnet is 
the restriction of 0 to a subset of the nodes. The input subnet is the union of 
all oriented cycles. The cause [x] of a node x is the subnet of nodes y for 
which (y, x)  is an edge. The immediate consequence A + of a subnet A is A 
extended by all nodes (with ingoing edges) the entire cause of which is 
contained in A. 

A net represents the whole space-time history of a computation rather 
than its state at some time moment. A node of the net corresponds to an 
"elementary event" in the course of the computation, the edges to "causal 
relations" between them. We can (and will) use multiple edges--simulated 
by adjusting the set | and states for the nodes--simulated by the states of 
the preceding edges. 

Definition 1. A net is called local if the cause of each node is weakly 
connected (i.e., connected as an undirected graph). A local net is called 
causal if any isomorphism between its two subnets A and B can be uniquely 
extended to an isomorphism between A + and B + . 

The requirement of uniqueness is not essential and is imposed only for 
convenience. To check for causality and locality, only subnets isomorphic to 
causes of nodes should be considered. This is easy since all such subnets are 
small and connected. 



964 Gacs and Levin 

The requirement of causality is the way we present physical de- 
terminism: the past uniquely determines the future. Another important 
physical principle, that of the locality of interaction, requires that the 
immediate cause of an elementary event should consist of events closely 
related to each other. The evidence for this close relation is usually present 
in a chain connecting these events and should be considered as part of the 
cause. Thus, nodes of the cause of a node have causal interconnection 
themselves and therefore correspond to close but different moments of time 
(in some analogy to the formalism in mechanics where the future positions 
of a system are determined by its present position and a position in the near 
past--giving a speed). 

The noninput nodes and the strongly connected components (packets) 
of the input form an acyclic graph with a natural partial order ~< on it. The 
base subnet consists of the input and all preceding nodes. The output subnet 
consists of the noninput nodes adjacent to edges labeled by a distinguished 
output subalphabet 19 o. Any graph can be converted to an input net by 
adding a loop to each node. These are the usual bases for nets. Other types 
of base may be used to simulate fancy things, e.g., the use of "oracles" 
(input nodes whose cause contains noninput nodes). 

The nodes of a net can be objects of any kind. But a noninput node x 
can be naturally identified with the function mapping y E Ix] to O(y, x). In 
the case of single-labeled alphabet, x can be identified with [x].  Then the 
causality of a net X can be written as ( I X [ _ D x = y E [ X I ) = x ~  

IXl. 

2.2. Programming. A causal net can in general be described much 
shorter than by listing the entire matrix 0. It is already uniquely determined 
by its base and the types of neighborhoods that can occur in it (unlike the 
Boolean circuits). The neighborhood V(x) of a node x (its center) is the 
subnet consisting of x and all nodes connected to x. The causal neighborhood 
C( x ) contains x and [xJ. The local [causal] structure (also called program) 
of a net is the set of its [causal] neighborhoods or "commands"  (up to 
isomorphism). A net X is said to be consistent with any local [causal] 
structure containing the one of X. 

For any ~ and causal program o~, a unique (possibly infinite) causal 
net o~(~) with base ~ exists whose causal structure is the maximal one 
consistent with ~. o2 is said to generate P ( ~ )  from ~.  If the net is finite and 
the output exists in all connected components, we say that the output is 
computed from the base by the program. Thus to implement computations 
by these concepts, take a finite causal program r and input A, let the 
program start generating a causal net from it by subsequent extensions and 
take the output as the result. 



Causal Nets 965 

The requirement of consistency with some fixed local structure is a 
useful way to impose various local restrictions on the net, e.g., boundedness 
of the degree of the nodes. The computation by a causal net is monotone: 
from a part of the input, always a part of the output will be computed. To 
eliminate this effect, one can always confine oneself to functions in whose 
domain no input net is a proper part of an other one. Such a domain is, for 
example, the set of all nets consistent with a closed local structure as defined 
below. Also, in a closed net, we can easily recognize the last moment when a 
node was used in generating other nodes. 

Definition 2. A net is locally asymmetric [closed] if none of its neighbor- 
hoods has a nontrivial isomorphism to itself [to a proper part of another 
one]. A closed locally asymmetric net with one distinguished central node in 
each (weakly) connected component is called marked. 

The nodes of a connected marked  net can easily be numbered in a 
canonical way: we construct a spanning tree with the central node as the 
root, proceeding on the edges of X from the root, e.g., in a breadth-first 
manner. In the theory of information processing, we practically never 
encounter nonmarked nets, and the permission of symmetric nets gives rise 
to serious special problems (like the problem to find an algorithm deciding 
whether two given graphs are isomorphic). 

2.3. Example: Representation of a Turing Machine. A Turing machine 
has a t ape - - a  finite succession of cells numbered by subsequent integers, 
and a head observing the cell with number c(t) at time t. A finite set of 
states is fixed and each cell k as well as the head is at each moment t in one 
of these states p(t ,  k) and qr The terminal cells have the distinguished states 
R and L. The program of the machine is a finite function )~ ordering cer- 
tain actions to pairs of states. Thus, h(qt, p( t ,c ( t ) )  ) determines qt+l, 
p(t + 1, c(t)), c(t + 1)-- c(t) = +-- 1 and p(t  + 1, k)  = p(t,  k)  for all k ~ c(t). 
If the cell c(t + 1) does not exist yet, it will be created. If the head was at 
one of the ends it also determines whether the cell c( t)  has to be removed. 
The sequence p(0, k) is the input and c (0)=  0. Thus always c(t)=--t (mod 
2), and since the state of a cell cannot change in steps of different parity, we 
can exclude these from consideration. Let us agree that at the end of the 
computation, the head assumes a special state ~', and going from one end of 
the tape to the other one, erases it. (This prevents the representing causal 
net from being infinite.) 

To represent the computations of this machine by causal nets, let 
s(t, k)  denote (p( t ,  k), x), where x is q, if c ( t ) = k ,  special symbol other- 
wise. Let the set V of nodes of the causal net be the set of time-cell pairs 
(t, k)  of equal parity where the cell k exists at time t. The edges run between 



966 Gacs and Levin 

nodes (t, k -+ 1) and (t + 1, k). Their label reflects the states s(t, k) of their 
adjacent nodes. Other edges, with some constant label, run between (t - 1, k)  
and (t + 1, k). If  the cell k does not exist at moment  t - 1, this edge connects 
(t + l , k )  to the terminal cell or forms a loop when t + 1 is 0 or 1. The 
output subalphabet contains the labels with states s(t, k) having x = ~. 

It can be easily checked that the above-defined net is causal and local. 

3. COMPLEXITY OF C O M P U T A T I O N S  

3.1. Time and Space. One of the differences between the more tradi- 
tional models and the computations as modeled by the causal nets is that on 
the latter the elementary operations are not necessarily synchronized. Only 
the relative order of those events is determined which are in a causal 
relation to each other. What results is a certain vagueness in the definition 
of the storage requirement of a causal net. 

Let us define the height d(x) of a node x of a causal net as the 
maximum length of a decreasing sequence of nodes starting with x. The 
height of whole connected net X is D ( X )  = maxx~ vd(x). The height can be 
considered as the time required for the computation. Let ff~(x) be a 
monotone mapping of [X I to the axis of time. (An example is d(X).) 

Definition 3. The storage size s,(t, X) at moment  t is the number  of 
edges (x, y )  with ~ ( x )  ~< t and ~ ( y )  i> t. Denote s,~(X) = max,s,~(t, X). For 
an unconnected net, height and storage are defined componentwise, as a 
family of numbers indexed by the connected components of X. 

It seems to be unnatural to define the storage used at one moment  in a 
way independent from the time function ~ ( x ) ;  apparently by the same 
considerations that in the theory of relativity show that there is no invariant 
way to define the notion of two events occurring at the same time. (Note 
that any imaginable relativistic computer is representable by a causal net.) 

Minimizing the storage size over all possible monotone mappings we 
obtain the value s o = m i n , s , ( X )  that is similar to the number  of stones 
needed to "pebble"  the net (see Cooke, 1973). However, s o is not a realistic 
measure of storage requirement. It seems to be reasonable to require that a 
timing be realized by the height function of some net " implement ing"  X in 
some formal sense. And the minimizing timing may be hard to compute and 
not implementable. 

3.2. Time-Space Trade-Off. Machines that actually build up a causal 
net of size n from its program and input cannot require less storage than n. 
The situation changes if we are content with a machine that does not 



Causal Nets 967 

necessarily store a representation of the net, only gives O(i, j) for any two 
nodes (their numbers) i, j on request. (The machine weakly represents the 
net.) This may require only storage O(log n) instead of n (that it never 
requires more is another formulation of the hypothesis of logarithmic 
time-space tradeoff). The next theorem was originally proved by N. V. Petri 
(1972) in terms of some concrete types of machines, but causal nets are the 
most natural setting for formulating it. It says that the storage size for weak 
representation can be minimized (no speedups). 

Theorem 1. For any causal structure P, there is a Turing machine T 
with the following property: For each input net X, using a weak 
representation of X (by an oracle), it weakly represents a causal net 
Y generated by 6) from X. Any other Turing machine M doing this 
(even only) for X will use storage no less than by a constant CM 
times the storage used by T. 

3.3. Example: Characterization of Pointer Machine Complexity. Vari- 
ous models of computation with only one finitary operation at each step can 
be considered as essentially a special case of Kolmogorov's graph machine 
(Kolmogorov and Uspenskii, 1958). This differs from the "storage modifica- 
tion machine" proposed later by Scht~nhage (1980) and called "pointer 
machine" (PM) by Knuth only in that Sch~3nhage works with directed, 
Kolmogorov and Uspensldi with undirected, graphs (forcing thereby both 
bounded in- and outdegree). The storage structure, called pointer graph of 
the pointer machine is a directed labeled graph with constant outdegree. 

The program prescribes how the central node transforms its 2-neigh- 
borhood step-by-step, modifying thereby gradually the whole graph. The 
initial graph is the input, the graph at halting is the output. They are labeled 
by the disjoint alphabets | O o. 

Barzdin and Kalnins generalized the model of Kolmogorov and 
Sch~nhage by introducing parallelism. A program for the parallel pointer 
machine (PPM) will be similar to the program of a PM but its meaning is 
different: the local transformations must be simultaneously carried out by 
all nodes. A node x changes only its outgoing edges, or disappears if they all 
loop. A common new node may be created by a maximal clique formed by 
edges with a distinguished label e. In determining the next action, edges with 
output labels do not count. The computation is finished when all edges have 
output labels. A PPM is a parallel Kolmogorov machine (PKM) if its pointer 
graphs are undirected at each step (i.e., their matrix is symmetric) and each 
node has a loop with a special constant label. The set of nonempty 
undirected pointer graphs is denoted by T(O). 

The functions defined on undirected connected marked input graphs 



968 Gacs and Levin 

computable by the PM and PPM are exactly the recursive functions. With 
respect to computing time, the PPM is a powerful generalization of the PM 
and is able to solve, e.g., any NP problem in polynomial time (but possibly 
with exponential space). This model can claim to be able to efficiently 
simulate any other model of parallel computation. 

A function f computable by a PPM--jus t  as the complexities in 
Definition 3-- is  componentwise, i.e., it commutes with disconnected union: 
f (XU Y) = f ( X )  U f (Y)  if I X I fq I Y I = O. We associate a pointer graph Z'  
with a (possibly acyclic) net Z by identifying all nodes connected by edges 
with a special label ~. 

Note: The above version of the PPM is more general than usual in 
order to extend Theorem 2 to symmetric inputs. For usual computations, 
the inputs should be assumed marked. 

Theorem 2. For componentwise functions f ,  u, v over T(Oz) these 
properties are equivalent. 

(a) A PKM exists computing f ( X )  for each X in time O(u(X)) 
and storage O(v(X)). 

(b) For each X a closed causal net Y exists with bounded 
degrees of nodes, with input X, output Z with Z ' =  f (X) ,  D ( Y ) =  
O(u(X)), sd(Y) = O(V( X)). 

Open Problem. Find out which traditional complexity corresponds to 
the size of causal nets. It is known that the size of the smallest causal net 
computing a function is between the time required on a PM and the time 
required on an "address machine" (a PM with a treelike storage structure). 
The second complexity may exceed the first one only by a logarithmic 
factor. 

3.4. Do Chips Need Wires? A physical device (like a chip) realizing a 
parallel Kolmogorov pointer machine should have its active elements (nodes) 
attached to a 2-dimensional surface, for the purposes of energy exchange. 
Thus, we assume the device to be a plane square, and the nodes to be 
subsquares with integer corners. Each node x at each moment has k links 
(d x is the maximum of their lengths) to other nodes (the partners of x). We 
do not care, for the moment, about the physical realization of the links, and 
do not assume that they occupy any separate place on the chip. We require, 
however, that a node occupies at least klog d~, in area (to store the relative 
addresses of the partners), and its elementary operation takes time propor- 
tional to d x (the speed of communication is bounded). Moreover, this time 
is dxlogCdx for devices called c--chips, where c >  1 is a constant. A chip is 
called primitive if all numbers dx are bounded by a constant. One can prove 
the following. 



Causal Nets 969 

Note: every c-chip can be simulated in the same time by a primitive chip 
of the same size. This result is in contrast to current chips where wires 
.occupy most of the area and to the theorems that for most graphs of 
bounded valence, in any realization, the average link length and the diame- 
ter of the chip is proportional to the amount of nodes. 

4. SYMMETRIC INPUTS 

In this section, we will characterize the functions computable by causal 
nets. Of course, every such function is partial recursive. But it turns out that 
partial recursive functions that are defined on certain very symmetric inputs 
are not computable in models preserving this symmetry. 

Let us try, e.g., to compute n (mod 2) from a "circle X of length n"" 
some net with the automorphism group Z,  (the cyclic group of order n). We 
ask for a program generating a one-edge output z from X with state equal to 
n (mod 2). Thinking in terms of parallel pointer machines, we can imagine 
the input as a circular array of identical automata--capable  of unlimited 
local organization and creation--trying to merge into a single node. There 
is no leader among them to organize the process. Since all have similar 
initial neighborhood, the first merge can divide them only into small groups 
of identical size--which is impossible if their number is prime. Indeed, it 
turns out that the existence of such a program implies that n cannot have 
any large prime divisors. (Such numbers are sometimes called "smooth,"  in 
reference to smooth sand containing only fine grains.) 

The functions computable on the pointer machine are exactly the 
partial recursive functions. However, the input to a PM must always be a 
marked pointer graph. Theorem 2 sets up a correspondence between func- 
tions computable by causal nets and those computable by the parallel 
pointer machine. Hence if we restrict our input nets to be marked, the 
functions computable by causal nets are just the partial recursive functions. 
On the other hand, functions that are not computable by causal nets will 
therefore be not computable by the parallel pointer machine (a version of 
Theorem 2 holds also without the restriction that the PPM be a Kolmogorov 
machine). We now proceed to formulate the necessary and sufficient condi- 
tions for a recursive function without the markedness requirement to be 
computable by a causal net. We assume the nodes of nets to be constructive 
objects (say integers). 

A partial componentwise function f from nets with a loop-edge at each 
node to output nets with uniformly bounded indegree will be called stan- 
dard. 

Let P be a causal structure generating causal nets X0, X~ with outputs 
B 0, B~ from input nets A0, A t. Suppose further that there exists an 



970 Gacs and Levin 

embedding t of A 0 into A I. By causality, this embedding will generate an 
embedding of the whole causal net X 0 into X 1 and thereby an embedding t e 
of B 0 into BI. Notice that the image of B 0 will be an ideal C of B 1 
(y  < x E I C t implies y E I C I )- For  different causal structures 62 computing f 
this correspondence of embeddings On the outputs to embeddings on the 
inputs can be different, but its existence is a serious restriction implying 
among others the monotonicity of f.  Hence the first condition on the 
standard partial function f is the following. Let idA. B be the identical 
embedding of A C_ B into B. 

(i) There exists a recursive correspondence F which orders an isomor- 
phism t e of f (Ao)  onto an ideal o f f ( A  I) to each embedding t: Ao~A I. F is 
afunctor, i.e., ( tooq)  r =  t~ot f. LetA o, A 1 be subnets of net C, A 2 = AoNA I, 
Bj = idFj.c(f(Aj)). Then B 2 = BoNB 1. 

This intersection property of the functor F reflects the fact that the net 
B 2 computed by a program 62 from the intersection A 2 of two nets Ao, A~ is 
the intersection of the nets B o, B l computed from A 0 and A~, respectively. 
Indeed, B 2 C_ BoAB ~ is evident from monotonicity. But the ancestors in the 
input of each node of BofqB I are all both in A 0 and A l, hence also in A 2. 
This proves B 2 --- BoNB t. 

The above property implies that for a subnet B of an output net f (A) 
we can find the smallest part of A still producing B. For  any subnet A 0 of A 
define f (A 0; A ) -- id AVo. A ( f (  A 0)); this is the subnet of f (A  ) compu ted from 
the subnet A 0 of A. The set of ancestors f-I(B; A) of B is the intersection of 
all subsets A 0 of A with f(Ao; A) _D B. (Notice that this notion is defined 
only by the functor F, without causal nets.) It follows from (i) that 
f ( f - I (B;  A);A)_D B. In a causal net X, of course, a node a of the input A is 
the ancestor of a subset C C_ I XI if a ~< y for some y ~  C. Notice that since 
the image of t F is always an ideal, a<bimpliesf- l((a};  A) C_ f - I ( { b ) ;  A). 

(ii) For  each input A, the set of ancestors of each node of f(A) is 
connected. 

The most interesting property F must have is connected with possible 
symmetries of the inputs. The functor ~, ~ ~F is a homomorphism from the 
group of automorphisms of A to that o f f (A) .  For  any node x o f f (A) ,  let us 
denote by G(x, A, F) the factor-group of the group of all automorphisms 
that leave x invariant (i.e., for which ~F(x) -'- X) by the normal subgroup of 
the automorphisms that fix all elements of f - l ( { x } ;  A). (This divisor is the 
unity if x depends on the whole input.) 

For any finite group G, let a(G) be the minimum of the indices of 
proper subgroups in G, b(G) the maximum of a(H) over all subgroups of 
G. b(G) is sometimes called the smoothness of G in analogy to the above- 
mentioned notion of smoothness of natural numbers. 

(iJJ) b(G(x, A, F)) is bounded for all inputs A. 



Causal Nets 971 

T h e o r e m  3. For a standard partial function f ,  the following two 
conditions are equivalent: 

(a) For all nets A in the domain of f ,  there are finite causal 
nets with input A, output f (A) ,  and with bounded indegrees of 
noninput nodes. 

(b) f satisfies (i-iii). 

R e m a r k s .  (I)  The recursiveness of the functor in (i) cannot be replaced 
by the weaker requirement of the recursiveness of the function f.  There is an 
example of a function f with a nonrecursive functor satisfying the rest of 
(i-iii) which has no recursive functor (even without the rest of (i-iii)). 

(2) Of most interest are functions in whose domain no net is a proper 
part  of an other one, and which are invariant, i.e., their functor F maps any 
automorphism of the input into the identity on the output. In this case, (iii) 
requires the automorphism groups of inputs to be uniformly smooth. 

(3) The smooth groups play an important  role in the newly discovered 
isomorphism-testing algorithms of graphs of bounded valence (Luks, 1980). 
Notice also that the automorphism group of a connected graph of bounded 
valence is smooth if one of its orbits is small. 

R E F E R E N C E S  

Babal, L., and Lovhsz, L. (1973). "Permutation Groups and Almost Regular Graphs," Studia 
Scientarium Mathematica Hungarica, 8, 141 - 150. 

Barzdin, Ja. M., and Kalnin's, Ja. Ja. (1974). "A Universal Automaton with Variable Structure," 
Automatic Control and Computing Sciences, 8 (2), pp. 6-12. 

Cook, S. A. (1973). "An Observation on Time-Storage Trade-Off," Proc. Fifth Ann. ACM 
Syrup. on the 77~eo~ of Computing, pp. 29-33. 

Kolmogorov, A. N., and Uspenskii, V. A. (1958). "On the Definition of an Algorithm," 
Upsekhi Mathematicheskikh Nauk, 13, 3-28 (1963). AMS Transl. 2nd ser., 217-245. 

Luks, E. M. (1980). "Isomorphism of Graphs of Bounded Valence Can Be Tested in 
Polynomial Time," Proc. of the 21st Symp. on FOCS, Syracuse 1980. 

Petri, N. V. (1972). Personal communication. 
Sch/Snhage, A. (1980). "Storage Modification Machines," S lAM J. on Computing, 9 (3), 

490-508. 


